wavecatcher-analysis
|
Poisson-distributed Landau-Gauss-Convolutions. More...
#include <FitFunctions.h>
Public Member Functions | |
double | operator() (double *x, double *par) |
Poisson-distributed Landau-Gauss-Convolutions.
Energy distribution measured in detector if there can be more than one MIP per event.
Uses a zero-clipped Poisson (at least 1 MIP due to trigger).
Definition at line 472 of file FitFunctions.h.
|
inline |
x | |
par | par[0]=Width (scale) parameter of Landau density par[1]=Most Probable (MP, location) parameter of Landau density par[2]=Total area (integral -inf to inf, normalization constant) par[3, 4]=Widths (sigma_0, sigma_1) of convoluted Gaussian functions par[5]= \(\lambda\) parameter of the Poisson distribution. The mean number of MIPs is \(\mu=\lambda/\left(1-exp(-\lambda)\right)\). par[6]=Signal per MIP (distance between two MIPs) |
Definition at line 485 of file FitFunctions.h.